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NG-A56583 
Improving Polygenic Prediction in Ancestrally Diverse Populations 
Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin Guo, 
Stanley Global Asia Initiatives, Lin He, Akira Sawa, Alicia R. Martin, Shengying Qin, Hailiang Huang, Tian Ge 
 
We thank all reviewers for the insightful comments and constructive suggestions, and the editor for giving us 
the opportunity to revise the manuscript. We have carefully considered the points made by the reviewers and 
revised the manuscript accordingly. Specifically, we have made several major changes and additions to the 
manuscript: 

(i) We have significantly expanded the simulation studies. In addition to the effect of varying genetic 
architectures (fraction of causal variants) and cross-population genetic correlations on the predictive 
performance of different polygenic prediction methods examined in the previous version of the 
manuscript, we have also assessed the impact of discovery GWAS sample size, SNP heritability, 
proportion of causal variants shared across populations, allele frequency and LD dependent genetic 
architecture, and the selection of hyper-parameters on the prediction accuracy. 

(ii) We have expanded the quantitative trait analysis in the UK Biobank (UKBB) and Biobank Japan (BBJ) 
from 16 traits to 33 traits, and the analysis in the UKBB, BBJ and PAGE study from 7 traits to 14 traits. 
In addition, we have updated all BBJ GWAS to the latest version as described in Sakaue and Kanai et 
al. (medRxiv: https://doi.org/10.1101/2020.10.23.20213652). This newer version of BBJ summary 
statistics has an increased sample size and improved imputation quality for many traits. 

(iii) We have added the Taiwan Biobank (TWB) as a new target dataset to assess the predictive 
performance of different PRS construction methods in an East Asian population. We have brought on 
a new co-author, Dr. Yen-Feng Lin, to the manuscript who contributed to the TWB analysis. 

(iv) We have updated all LDpred results to LDpred2 (Prive et al. Bioinformatics 36, 5424-5431), reflecting 
the recent improvement in the LDpred algorithm. 

(v) We have added LDpred2-mult and PRS-CS-mult to all simulations and real data analyses to provide a 
more comprehensive comparison across different polygenic prediction methods. In particular, a 
comparison between PRS-CS-mult and PRS-CSx demonstrates the benefits of jointly modeling 
multiple GWAS summary statistics across populations using a coupled continuous shrinkage prior. 

 
We now provide a point-by-point response to specific reviewer concerns. Our response is preceded by a 
double-dash (--) and rendered in a blue typeface. Major changes to the text are highlighted in red in the 
updated manuscript. We believe that the manuscript has been substantially improved and hope it is now 
suitable for publication in Nature Genetics. 
 
 
Reviewer #1: 
This paper describes a new approach (PRS-CSx) to construct PRS under the cross-population setting. The 
method is an extension of PRS-CS (their previous work) which is a Bayesian framework with a continuous 
shrinkage (CS) prior on SNP effect sizes. And in PRS-CSx, the authors couple the genetic effects across 
populations via a shared continuous shrinkage prior, providing a flexible way to aggregate information from 
different populations. By applying to several simulations and real data, they have shown improved genetic risk 
prediction performance of PRS-CSx relative to alternative approaches. However, as to the analyses and 
results, I have a number of concerns. 
 
1. It isn’t clear to me if the improved performance of PRS-CSx is due to the usage of shared continuous 

shrinkage prior, or is simply due to the linear combination of more than one PRS constructed from more 
data. Since during the comparison with other multi-ethnic methods, the authors only compared PRS-CSx 
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with PT-meta and PT-multi which are both based on PT, it is worth checking the performance of LDPred-
meta/LDPred-multi or PRS-CS-meta/PRS-CS-multi to be more persuasive about the advantage of having 
such a shared continuous shrinkage prior in the cross-population setting. And from another perspective, if I 
have two independent data from the same population, will use PRS-CSx be better or the same as using 
single PRS-CS directly on the combined data? 

 
-- We thank the reviewer for this insightful comment and agree that a detailed investigation on the advantage of 
the coupled continuous shrinkage prior was missing. In this revised version of the manuscript, we have added 
LDpred2-mult and PRS-CS-mult to all simulations and real data analyses. In particular, a comparison between 
PRS-CS-mult and PRS-CSx quantifies the benefits of using a coupled shrinkage prior across populations. Our 
results showed that PRS-CSx consistently outperformed the prediction of PRS-CS-mult in non-European 
populations, although the amount of improvement varied across traits and was not always substantial. For 
example, when integrating UKBB and BBJ GWAS and predicting into the EAS population, PRS-CSx had a 
median relative improvement of 8.3% and 7.1% over PRS-CS-mult in the EAS and AFR populations, 
respectively (Figure 3). The improvement of PRS-CSx over LDpred-mult was greater, with a median relative 
increase of 10.5% and 22.2% in the EAS and AFR populations, respectively (Figure 3). We also note that, 
while this comparison helps to dissect the contributions from sample size increase vs. the use of the coupled 
shrinkage prior to prediction accuracy, PRS-CS-mult and LDpred-mult are not published methods per se and 
have not been used in any studies. 
 
We chose to compare PRS-CSx against LDpred2-mult and PRS-CS-mult rather than LDpred2-meta and PRS-
CS-meta because (i) The only modeling difference between PRS-CSx and PRS-CS-mult is the use of a 
coupled shrinkage prior. Comparing PRS-CSx with the “mult” methods thus provides a direct characterization 
of the benefits of the coupled prior. (ii) The LD pattern of a cross-ancestry meta-analyzed GWAS is a mixture 
of population-specific LD patterns, which is difficult to be appropriately modelled using current methods. 
Meanwhile, an accurate modeling of the LD patterns is critical to Bayesian polygenic prediction methods. In 
fact, we have observed convergence issues for LDpred2 when there is mismatch between the discovery 
GWAS summary statistics and the LD reference panel. We therefore do not recommend LDpred2-meta and 
PRS-CS-meta from a modeling perspective. The same recommendation was made by other recent studies in 
the literature (e.g., medRxiv: https://doi.org/10.1101/2021.01.19.21249483). 
 
Regarding the last question, PRS-CSx is designed to flexibly model GWAS summary statistics from multiple 
populations where SNP effect sizes and/or LD patterns differ. For two or more GWAS conducted in 
independent samples from the same population, where effect sizes and LD patterns are expected to be highly 
concordant, a fixed-effect meta-analysis, whose modeling assumptions are fully satisfied in this scenario, is 
probably the optimal approach to combine the GWAS and maximize statistical power. We have clarified this in 
the revised manuscript. See Page 11, Line 400-404. 
 
2. The authors provide nice figures (Figure 3) to show the improvement of PRS-CSx over other methods, but 

when it comes to individual traits (Table S4), the improvements are actually not statistically significant with 
overlapping confidence intervals for most traits (e.g. Red blood cell count, blood pressure, etc.). 

 
-- Thanks for the comment. We agree that the improvement of PRS-CSx over alternative methods, in 
particular, LDpred2-mult and PRS-CS-mult, is trait-specific. While the prediction accuracy for many traits was 
substantially increased (e.g., when integrating UKBB and BBJ GWAS and predicting into the EAS population, 
PRS-CSx improved the prediction accuracy over PRS-CS-mult by >10% for 15 out of 33 traits), as the reviewer 
pointed out, the improvement can be small and non-significant for other traits. We think this primarily reflects 
the relatively low heritability and the lack of powerful non-EUR GWAS for many traits, rather than a weakness 
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of PRS-CSx. In fact, PRS-CSx provided improvement over alternative methods for the majority of the traits we 
examined (e.g., in the UKBB+BBJ EAS prediction, PRS-CSx was more accurate for 32 and 27 out of 33 traits 
than PRS-CS-mult and LDpred-mult, respectively), and the trend was highly significant (two-sided sign test P = 
7.92x10-9 and 3.24x10-4, respectively), supporting our conclusion that PRS-CSx improves the prediction 
accuracy over alternative methods in non-European populations. We have added some discussions around 
these points in the revised manuscript, and suggested that future research is needed to dissect the effects of 
potential factors (e.g., the comparative genetic architecture across populations and the sample characteristics 
of the target dataset) on the accuracy of cross-population prediction and to better understand the behavior of 
different prediction algorithms for individual traits. See Page 11, Line 406-411. 
 
3. The model used to generate the simulation matches the authors’ model exactly, where they assume the 

causal variants are the same across populations. They may also want to investigate the potential for bias 
when the model is misspecified, for example, when only a segment of the causal SNPs is shared between 
populations and when the heritability is different across populations. 

 
-- Thanks for this helpful suggestion. As mentioned at the beginning of the response letter, we have 
significantly expanded the simulation studies in the revised manuscript. Specifically, to address the two 
questions here, we have added a new set of simulations where the proportion of shared causal variants across 
populations was reduced to 70% or 40% (Supplementary Figure 6), and another set of simulations where trait 
heritability was different across populations (h2=0.5 and 0.25 in EUR and non-EUR populations respectively, 
and vice versa; Supplementary Figure 5). Our simulation results showed that the PRS-CSx model is robust to 
model misspecification and varying trait heritability across populations. See Page 6, Line 229-238; 
Supplementary Figures 5 and 6. 
 
4. When applying the methods to quantitative traits for EUR target, even with around 100,000 EAS samples 

(BBJ) added to the UKBB, the improvement of prediction performance is still very limited. The authors 
explain that it is likely because the UKBB GWAS were already well-powered. To make this claim stronger, 
it is better to do more simulations to show the relations between sample size and prediction performance to 
prove that there exists such a threshold that makes the GWAS “well-powered”. 

 
-- In the revised manuscript, we have conducted a new set of simulations where we varied the sample size of 
the discovery GWAS with the ratio of the EUR vs. non-EUR GWAS sample sizes kept constant (50K EUR + 
10K non-EUR; 100K EUR + 20K non-EUR; 200K EUR + 40K non-EUR; 300K EUR + 60K non-EUR), and a 
second set of simulations where we varied the ratio of the EUR vs. non-EUR GWAS sample sizes with the total 
sample size kept constant (120K EUR + 0K non-EUR; 100K EUR + 20K non-EUR; 80K EUR + 40K non-EUR; 
60K EUR + 60K non-EUR). In the first set of simulations, integrating non-EUR GWAS with EUR GWAS using 
PRS-CSx provided limited improvement in prediction accuracy over PRS-CS trained on the EUR GWAS in the 
EUR target population, regardless of the GWAS sample size (Supplementary Figure 3). In the second set of 
simulations, adding 60K non-EUR GWAS to the 60K EUR GWAS clearly improved the prediction over single-
discovery methods in the EUR population, and the improvement decreased as the ratio of the EUR vs. non-
EUR GWAS sample sizes became larger (Supplementary Figure 4). These results suggested that when the 
target population is EUR, adding a small non-EUR GWAS provides limited gain in prediction power, but non-
EUR GWAS can make an impact on the prediction when their sample sizes become more comparable to the 
EUR GWAS. In real data analysis, since the vast majority of non-EUR GWAS remained under-powered 
relative to the EUR GWAS, their contribution to the prediction in the EUR population was limited. Our previous 
explanation of observation, which attributed the limited contribution from non-EUR GWAS to the power 
saturation of the EUR GWAS seemed to be misleading. We have revised the text in the manuscript 
accordingly. See Page 7, Line 275-280. 
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Specific comments: 
1. line 162, could the authors provide a short explanation about why “PRS-CS may be less accurate than 

LDpred when the genetic architecture is highly polygenic (10% causal variants) and the discovery sample 
size is limited”? 

 
-- Great question. This is something we had observed when we developed the PRS-CS algorithm and 
benchmarked its performance against LDpred. After updating LDpred to LDpred2, we continued to have this 
observation although LDpred2 in general improved over LDpred. We suspect different predictive performance 
of PRS-CS and LDpred2 reflects the strengthens and limitations of the continuous shrinkage prior vs. the 
spike-and-slab prior used in the two algorithms. Specifically, to ensure that posterior effect size estimates are 
not inflated, we have imposed a minimal shrinkage to the marginal effect size estimates in PRS-CS, which may 
induce a stronger-than-optimal regularization when the GWAS sample size is small. In contrast, LDpred2 does 
not guarantee the boundedness of the posterior effect size estimates, which may better separate signals from 
noise when the GWAS has limited power, at the expense of the algorithm being sensitive to the imperfectly 
matched LD reference panel and having convergence issues when the GWAS sample size is large. We have 
added some discussions on these issues in the revised manuscript. See Page 4-5, Line 168-177. 
 
2. For the analysis of the UKBB dataset, since Neale Lab GWAS was generated based on all the independent 

EUR population, I am confused why the authors can still have ~14,000 EUR individuals left that are not 
overlapped with Neale Lab GWAS samples. 

 
-- The Neale Lab GWAS was conducted in White British individuals in the UK Biobank. We defined a larger 
sample of European ancestry, among which we identified European individuals who are non-British and are 
unrelated with the Neale Lab GWAS sample as the target dataset for PRS validation and testing. We have 
clarified this in the revised manuscript. See Page 17, Line 678-680. 
 
3. In figure 2, the authors only provide single-PRS performance based on the EUR population, as the target 

population is EAS in figure 2, they may also want to provide single-PRS performance based on the EAS 
population. It is similar for the right panel of figure 4, better to include more methods to make the results 
more comprehensive. 

 
-- Thanks for the suggestion. We have now included the performance of single-discovery methods trained on 
the non-EUR GWAS summary statistics in Figure 2. 
 
4. In Table S3, it is not clear why the authors use the raw data for some traits, while use IRNT transformation 

for others. 
 
-- In the previous version of the BBJ GWAS release, some traits were inverse rank normalized before 
conducting the GWAS, while other traits were tested for association on their original scale. As the Neale Lab 
provided both transformed and untransformed GWAS, we tried to match the scale of the phenotype between 
BBJ and UKBB GWAS. In the revised version of the manuscript, we have updated all BBJ GWAS to the latest 
version which were conducted on the original scale. In addition, the scale of the phenotype seems to have 
minimal impact on prediction accuracy. Therefore, we have used GWAS of the raw phenotype in both BBJ and 
UKBB throughout the revised manuscript. 
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Reviewer #2: 
In this paper, the authors introduced PRS-CSx, an extension of PRS-CS, which shown an improved 
performance over existing methods when applied to under-represented population (e.g. Africans. The 
performance of PRS-CSx is promising, and it will lay an important foundation for future development of cross-
population PRS algorithms. Some details on the simulation procedure, and phenotype definition for the real 
phenotype analyses were missing, making it slightly difficult to fully replicate the simulation analyses stated in 
the current paper (see below). To summarize, PRS-CSx is an important development to the field, but the 
current paper needed to address a few issues before it can be published. Below are some questions and 
comments: 
 
1. In the introduction, the authors claimed that “…, PRS alone are already more accurate than combined 

clinical risk factors currently used for population screening for some diseases…”, which seems hard to 
believe. The same claim was not stated in the two cited papers, instead, those papers suggest that PRS 
provides additional information on top of existing clinical risk factors e.g. family history. 

 
-- Thanks for the comment. We agree that this statement may be overly strong. We have revised the text to 
say that “PRS can already provide predictive power above and beyond combined clinical risk factors currently 
used for population screening for some diseases such as breast cancer in European populations”. See Page 2, 
Line 56-58. 
 
2. How exactly were the phenotype simulated? Usually, phenotypes (Y) were simulated using Y = XB + E 

where B is the simulated effect size (in this paper, it was simulated using the multivariate normal 
distribution), E is the non-genetic component, usually assume to follow a normal distribution and X is the 
genotype. Were the phenotypes simulated using a standardized X? If X is standardized, is it standardized 
within each sub-population? 

 
-- Apologize that we didn’t provide enough details. The phenotype was simulated using 𝒚 = 𝑿𝜷 + 𝝐 in each 
population, where 𝑿 was the genotype matrix (not standardized), 𝜷 was the simulated per-allele effect size 
vector in which causal variants had non-zero effects and the rest of the variants had zero effect sizes, and 𝝐 
was the simulated non-genetic component drawn from a normal distribution, which was scaled to fix the trait 
heritability at the desired value. These have now been clarified in the revised manuscript. See Page 16, Line 
633-636. 
 
As suggested by Reviewer 3, we have added a new set of simulations where, instead of sampling per-allele 
SNP effect sizes from a multivariate normal distribution with homogeneous variance across the genome, we 
assumed that the variance of SNP 𝑗 in population 𝑘 is proportional to [2𝑓!",1 − 𝑓!"/]#ℓ!"# , where 𝑓!" and ℓ!" are 
the minor allele frequency (MAF) and LD score of SNP 𝑗 in population 𝑘, respectively. 𝛼 = 0 corresponds to the 
main simulation setting in the manuscript which assumed that per-allele SNP effect sizes are independent of 
allele frequency and LD patterns. 𝛼 = −1 corresponds to standardized genotype matrices. When 𝛼 < 0, 
variants with lower MAF and variants located in lower LD regions tend to have larger effects on the trait as 
observed in recent empirical studies. We used 𝛼 = −0.25 in this set of simulation, which has been empirically 
estimated to reflect the relationship between effect size and allele frequency and produced approximately a 4-
fold difference in the variance of per-allele effect size for both high-frequency vs. low-frequency variants and 
high-LD vs. low-LD variants included in the simulation. Our results showed that PRS-CSx is robust to the 
coupling between SNP effect size, allele frequency and LD. See Page 6, Line 238-242; Page 16, Line 647-655; 
Supplementary Figure 7. 
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3. The code for interpolation is for interpolation of cM, not for cM/Mb. As the rate (cM/Mb) and cM from the 
provided file were calculated from different method, it is not clear how the interpolation of rate was done 
based on the interpolated cM. 

 
-- We linearly interpolated the genetic map (cM) and recombination rate (cM/Mb) using the same method. This 
has now been clarified in the Methods section. See Page 15, Line 617-621. 
 
4. The 1000G haplotype file provided contains samples from all population. Did the author separated the 

haplotypes into each super-population before using as an input to HapGen? In similar vein, were there any 
quality check (e.g. PCA plot) to show that HapGen were simulating samples from different populations? 

 
-- Yes, we separated the 1000 Genomes haplotypes into EUR, EAS and AFR super-populations before using 
them as the reference panel in HAPGEN2. This has now been clarified in the manuscript. See Page 15, Line 
614-617. For each population, we simulated all the samples in a single HAPGEN2 run to avoid potential batch 
effects in the simulated genotypes. We confirmed that, within each population, the allele frequency and LD 
patterns of the simulated genotypes were highly similar to those of the 1KG reference panels (e.g., see the 
frequency plot below), while across populations, the MAF and LD of the simulated genotypes showed 
substantial differences, suggesting that the simulated data indeed captured cross-population differences in 
allele frequency and LD patterns.  
 

 
 
 
5. How many SNPs were included in the simulation? Are the causal variants included or excluded in the data 

used for downstream analyses? 
 
-- We included 1,296,253 HapMap3 SNPs with MAF >0.01 in at least one of the EUR, EAS and AFR 
populations in the simulation. The exact number of SNPs used in the simulations has been added to the 
Methods section. See Page 16, Line 626-627. Causal variants were sampled from these HapMap3 SNPs and 
thus included in downstream analyses. That being said, if a causal SNP was rare (MAF <1%) in one or two of 
the populations, it would be missing from the LD reference panels for those populations and thus excluded 
from the construction of Bayesian PRS for those populations. We have clarified these in the revised 
manuscript. See Page 14, Line 540-544. 
 
6. In the simulation, when assessing the multi-discovery methods, an additional 20k samples were used as a 

discovery dataset, which makes it difficult to determine whether the improved performance is due to 
increased sample size or due to the algorithm. It might be worthwhile to also use 100k EUR samples as the 
discovery dataset for the single discovery methods just to eliminate the sample size different. 
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-- Thanks for the suggestion. This is a question raised by all reviewers. In the primary simulation, we would like 
to keep the sample size difference for single-discovery and multi-discovery methods because (i) this design 
mimics the real-world scenario where each method is applied to the largest GWAS available; (ii) this design 
shows the advantage of integrating data from multiple populations over single-discovery methods in cross-
population prediction. However, we totally agree with the reviewers that it is important to investigate whether 
the improvement in prediction accuracy can be attributed to increased diversity of the discovery data, or was 
simply due to sample size increase. We therefore devoted one new set of simulations to address this question 
where we varied the ratio of the EUR vs. non-EUR GWAS sample sizes with the total sample size kept 
constant (120K EUR + 0K non-EUR; 100K EUR + 20K non-EUR; 80K EUR + 40K non-EUR; 60K EUR + 60K 
non-EUR). We observed that the prediction in non-EUR populations benefitted substantially from increasing 
the proportion of non-EUR training samples, and the coupled shrinkage prior provided consistent gain in 
prediction accuracy as the power of the non-EUR GWAS varied. See Page 6, Line 225-229; Supplementary 
Figure 4.  
 
7. On the other hand, when a population specific discovery data is available, it might be beneficial to use it 

instead of the larger non-population specific discovery, as it might better capture the difference in genetic 
architecture. It would therefore be interesting to know how the single discovery methods performed when 
20k population specific discovery data were used. 

 
-- Thanks for the suggestion. We have now included the performance of single-discovery methods trained on 
each discovery sample in both simulation studies (Figure 2) and real data analyses (Figures 3 and 4). 
 
8. The authors of LDpred has now published LDpred2, which addresses some issues presented in LDpred. 

Specifically, in their paper, they have compared the performance of LDpred2, lassosum (a PRS method 
that utilize penalized regression) and PRS-CS and they have shown that both LDpred2 and lassosum has 
an improved performance over PRS-CS. Given their superior performance over PRS-CS, it might be 
interesting to observed how they compared with PRS-CSx when applied to under-represented populations. 

 
-- Thanks for the suggestion and pointing us to the improved version of LDpred. We have updated LDpred 
results to LDpred2 throughout the manuscript. 
 
9. The procedure used for the multi-discovery method PT-meta and PT-mult is not restrictive to a specific 

method. The same procedure can be applied to LDpred. Given that PT usually has the worst performance 
across all methods, it will also be beneficial to include LDpred-meta and LDpred-multi in the comparison. 

 
-- Thanks for the comment, which has been suggested by all reviewers. In the revised manuscript, we have 
added LDpred2-mult and PRS-CS-mult to all simulations and real data analyses. In particular, a comparison 
between PRS-CS-mult and PRS-CSx quantifies the benefits of using a coupled shrinkage prior across 
populations. Our results showed that PRS-CSx consistently outperformed the prediction of PRS-CS-mult in 
non-European populations, although the amount of improvement varied across traits and was not always 
substantial. For example, when integrating UKBB and BBJ GWAS and predicting into the EAS population, 
PRS-CSx had a median relative improvement of 8.3% and 7.1% over PRS-CS-mult in the EAS and AFR 
populations, respectively (Figure 3). The improvement of PRS-CSx over LDpred-mult was greater, with a 
median relative increase of 10.5% and 22.2% in the EAS and AFR populations, respectively (Figure 3). 
 
We chose to compare PRS-CSx against LDpred2-mult and PRS-CS-mult rather than LDpred2-meta and PRS-
CS-meta because (i) The only modeling difference between PRS-CSx and PRS-CS-mult is the use of a 
coupled shrinkage prior. Comparing PRS-CSx with the “mult” methods thus provides a direct characterization 
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of the benefits of the coupled prior. (ii) The LD pattern of a cross-ancestry meta-analyzed GWAS is a mixture 
of population-specific LD patterns, which is difficult to be appropriately modelled using current methods. 
Meanwhile, an accurate modeling of the LD patterns is critical to Bayesian polygenic prediction methods. In 
fact, we have observed convergence issues for LDpred2 when there is mismatch between the discovery 
GWAS summary statistics and the LD reference panel. We therefore do not recommend LDpred2-meta and 
PRS-CS-meta from a modeling perspective. The same recommendation was made by other recent studies in 
the literature (e.g., medRxiv: https://doi.org/10.1101/2021.01.19.21249483). 
 
10. For the real data analysis, most of the selected traits are highly correlated (e.g Diastolic blood pressure and 

Systolic blood pressure; Mean corpuscular hemoglobin and Mean corpuscular hemoglobin concentration 
etc). As we know performance of PRS software are trait dependent (e.g. LDpred has much better 
performance for Height), will it be possible to use less correlated traits for the real data analysis (if 
available)? 

 
-- As we mentioned at the beginning of the response letter, we have now updated all BBJ GWAS to the latest 
version and expanded the quantitative trait analysis in the UK Biobank (UKBB) and Biobank Japan (BBJ) from 
16 traits to 33 traits, and the analysis in the UKBB, BBJ and PAGE study from 7 traits to 14 traits. These traits 
broadly cover anthropometric, cardiovascular, hematological, kidney, liver and metabolic measures, and are 
the largest collection with publicly available summary statistics across at least two global populations. We hope 
that this expanded list of traits has covered a wider range of genetic architectures and provided a more 
comprehensive comparison of different polygenic prediction methods in real applications.  
 
11. Here, the authors reported the median increase in R2, yet it seems like it should be the median relative 

increase in R2 (as in some instance the increase is up to 209%) 
 
-- Thanks for the careful reading. Yes, we meant to report the median relative increase in R2. We have doubled 
checked the manuscript to make sure that all statistics are accurately reported. 
 
12. Likely typo on line 272 to 275. The author stated that all PRS R2 increased to 0.060, yet figure 4a shows 

that only PRS-CSx reaches R2 of 0.06. 
 
-- Thanks for pointing this out. We have rephrased this sentence. See Page 9-10, Line 359-362. 
 
13. In the method section, for PT-multi, the authors stated that “The optimal p-value threshold for each 

discovery sample and the weights for the linear combination …”, what is the weight? 
 
-- We referred to the coefficients for the linear combination of multiple PRS, which has now been clarified. See 
Page 15, Line 600-609. 
 
14. What is the number of SNPs remained after quality controls were performed on the UK Biobank? Were the 

imputed data used for the PRS analysis? If imputed data were used, what were the thresholds used to 
transform the dosage information into hard coded genotypes? 

 
-- Yes, imputed UK Biobank data was used. The final target dataset included 12,886,200, 8,593,932, 
6,506,126, 8,211,053 and 8,032,121 variants for the AFR, AMR, EAS, EUR and SAS populations, respectively. 
We used the default parameters in PLINK 2.0 to convert dosage information into hard coded genotypes (i.e., 
dosage was rounded to the nearest hardcall when the distance was no great than 0.1; otherwise a missing 
hardcall was saved). These have now been reported in the manuscript. See Page 17, Line 680-686. 
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Reviewer #3: 
The manuscript by Ryan et al presents an approach for PRS that attains improved accuracy in cross-
population settings. The approach is a marginal extension of the recently proposed PRS-CS method from the 
same authors from one to multiple populations. The approach is compared with other recently proposed 
methods for PRS and shows improved prediction (as measured by R2) in simulations and real data from UK 
Biobank. 
 
1. I found it unclear how is the current method PRC-CSx different from PRC-CS. The math on page 12 is very 

brief and does not really explain how are the causal effects coupled across populations. From the brief 
second equation in Methods, where I assume j stands for a SNP, the causal effects across populations are 
drawn from a gaussian with population specific variance parameter that is scaled by \psi_j variable that is 
similar across populations. What are different choices of \psi_j implying on the cross-population genetic 
correlation? Second, how robust is the inference across the prior parameters (a=1, b=1/2)? Some 
simulations or analytical derivations on impact of this prior on the cross-population genetic correlation in 
causal effects would be very useful. 

 
-- Thanks for the comment. In the revised version of the manuscript, we have expanded the Methods section to 
provide a more detailed description of the PRS-CSx model. In particular, we have analytically derived the 
posterior mean of the SNP effect sizes, which was then used to explain how genetic effects are coupled across 
populations. See Page 14, Line 528-536. Additional information on the PRS-CSx model and posterior 
inference has been included in the Supplementary Methods. We hope that the method has now been more 
clearly described. 
 
The hyper-parameters of the coupled continuous shrinkage prior (a=1, b=1/2) were inherited from PRS-CS. 
Parameter a controls the shape of the continuous shrinkage prior around zero, while b affects the tails of the 
prior distribution. A smaller value of a places more probability mass near zero, and thus imposing stronger 
shrinkage on the SNP effect sizes; a smaller value of b produces heavier tails of the prior distribution, and thus 
can better accommodate large genetic effects. When developing PRS-CS, we evaluated the impact of the two 
hyper-parameters on prediction accuracy using a small two-dimensional grid and concluded that the predictive 
performance is robust to the selection of a (a=1/2, a=1 or a=3/2) as long as substantial probability mass of the 
prior distribution is placed at the original, while it is important to set b to a small value such that the prior has 
heavy, Cauchy-like tails in order not to over-shrink truly non-zero effects. In the revised manuscript, we added 
a new set of simulations to re-evaluate the robustness of the PRS-CSx algorithm with respect to these two 
hyper-parameters. Specifically, we assessed several combinations of the two parameters (a=1/2, b=1/2; a=1, 
b=1/2; a=3/2, b=1/2; a=1, b=1), and had the same observations as before: the predictive performance was 
robust to the selection of a but setting b to larger values substantially reduced prediction accuracy. See Page 
6, Line 242-246; Supplementary Table 9. We therefore fixed the two parameters to a=1 and b=1/2, which is 
consistent with the default parameter setting of PRS-CS. In practice, we do not recommend tuning these two 
hyper-parameters when using PRS-CS or PRS-CSx. 

2. Figure 2. The authors compare multi-population methods vs single-population by adding 20k new samples 
from the target population only for multi-population methods. That conflates the gain in accuracy due to 
boost in sample size, or better modeling of cross-population causal effect. I would encourage the authors a 
plotting style for which the sample size is fixed across the different comparator methods. Similarly for 
Figure 3. 

 
-- Thanks for the suggestion. This is a question raised by all reviewers. In the primary simulation, we would like 
to keep the sample size difference for single-discovery and multi-discovery methods because (i) this design 
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mimics the real-world scenario where each method is applied to the largest GWAS available; (ii) this design 
shows the advantage of integrating data from multiple populations over single-discovery methods in cross-
population prediction.  
 
However, we totally agree with the reviewers that it is important to investigate whether the improvement in 
prediction accuracy can be attributed to increased diversity of the discovery data and the joint modeling of 
genetic effects across populations, or was simply due to sample size increase. We therefore added two 
analyses to address this question. First, we added one new set of simulations where we varied the ratio of the 
EUR vs. non-EUR GWAS sample sizes with the total sample size kept constant (120K EUR + 0K non-EUR; 
100K EUR + 20K non-EUR; 80K EUR + 40K non-EUR; 60K EUR + 60K non-EUR). We observed that the 
prediction in non-EUR populations benefitted substantially from increasing the proportion of non-EUR training 
samples, and the coupled shrinkage prior provided consistent gain in prediction accuracy as the power of the 
non-EUR GWAS varied. See Page 6, Line 225-229; Supplementary Figure 4. Second, we have added 
LDpred2-mult and PRS-CS-mult to all simulations and real data analyses. In particular, the only modeling 
difference between PRS-CSx and PRS-CS-mult is the use of a coupled shrinkage prior, and thus comparing 
PRS-CSx with PRS-CS-mult directly characterizes the benefits of jointly modeling SNP effect sizes across 
populations. These analyses showed that increasing diversity of the discovery GWAS and coupling genetic 
effects across populations indeed improved prediction in non-EUR populations. We hope that these additions 
have sufficiently addressed the concern. 
 
3. Results in real data show the proposed method outperforms others. First, it is hard to compare methods 

that use variable sample sizes (see comment above). Second, the authors focus on relative R2 by 
normalizing to prediction in EUR which mask out the main prediction r2 that are rather small and likely not 
useful in practice: e.g., for AFR using UKBB+BBJ, the average absolute R2 is 2% PRS-CSx, 1% (PT-meta) 
and 1.3% (PT-multi) (Table S4). 

 
-- Respectfully, we argue that, in real data analysis, the comparison across different polygenic prediction 
methods was fair in the sense that each method was applied to the largest GWAS available. This is also the 
practice being used in other cross-ancestry PRS manuscripts (e.g., Tables 3-5 in PMID 29110330; medRxiv: 
https://doi.org/10.1101/2021.01.19.21249483). Since we don’t have access to individual-level data for many 
biobanks (e.g., Biobank Japan and the PAGE study) and rely on publicly available GWAS summary statistics, it 
is not practical to rerun all the GWAS and make the total discovery sample size equal across methods. 
However, as we mentioned, all the multi-discovery methods (PT-meta, PT-mult, LDpred2-mult, PRS-CS-mult, 
PRS-CSx) had the same discovery sample size, and a comparison between PRS-CSx and PRS-CS-mult 
directly quantifies the benefits of the coupled continuous shrinkage prior. 
 
We agree that for some traits, after combining discovery GWAS from multiple populations, the prediction 
accuracy remained low especially in non-EUR populations and may not be useful in practice. We think this 
primarily reflects the relatively low heritability and the lack of powerful non-EUR GWAS for many traits, rather 
than a weakness of the method. The low absolute prediction accuracy in non-European ancestries reflects the 
long-time Eurocentric biases in GWAS that requires systematic efforts to overcome. Our methodological 
innovation is a critical first step towards addressing this challenge by providing a tool that maximizes the utility 
of the non-European data, which encourages more genetics studies in the non-European populations. We 
have added some discussions surrounding these points to the manuscript. See Page 12, Line 449-458. 
 
We chose to present relative prediction accuracy in the main text because we examined a wide range of traits 
with different heritability, genetic architectures and prediction accuracy. Reporting the median absolute R2 may 
be misleading when comparing methods. For example, it is theoretically possible that Method A improves 
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prediction for all but one trait over Method B but has a lower median absolute R2. As the primary goal of this 
manuscript is to develop a cross-population polygenic prediction method and benchmark its performance 
against alternative methods, we believe that it is more appropriate and informative to present the relative R2 in 
the main figure. We have included all absolute R2 estimates in Supplementary Tables. 
 
4. The simulations could be improved to be more realistic. First some correlation in the non-genetic 

component could be considered. Most importantly it would be useful to assess the accuracy under more 
realistic couplings of causal effects with MAF and LD (i.e. by using the baseline-LD model). Third, how do 
the authors deal with variants that are monomorphic in one of the populations? 

 
-- Thanks for the suggestions. First, since we focused on cross-population prediction in this work, where 
discovery GWAS samples were non-overlapping and had different genetic ancestry, we think it is reasonable 
to assume that non-genetic (environmental) components are independent across samples, which was also the 
practice of other cross-ancestry PRS studies (see e.g., PMID 29110330; medRxiv: 
https://doi.org/10.1101/2021.01.19.21249483). Correlation in the non-genetic component may be relevant for 
within-population cross-trait prediction, where the training samples may be overlapping for different traits. As 
we discussed in the manuscript, the PRS-CSx framework may be extended to integrate genetically correlated 
traits to inform and improve cross-trait prediction (see Page 12, Line 445-447), but we would love to save this 
as a future direction. 
 
To address the second suggestion, in the revised manuscript, we have added a new set of simulations where 
instead of sampling per-allele SNP effect sizes from a multivariate normal distribution with homogeneous 
variance across the genome, we assumed that the variance of SNP 𝑗 in population 𝑘 is proportional to 
[2𝑓!",1 − 𝑓!"/]#ℓ!"# , where 𝑓!" and ℓ!" are the minor allele frequency (MAF) and LD score of SNP 𝑗 in 
population 𝑘, respectively. 𝛼 = 0 corresponds to the main simulation setting in the manuscript which assumed 
that per-allele SNP effect sizes are independent of allele frequency and LD patterns. 𝛼 = −1 corresponds to 
standardized genotype matrices. When 𝛼 < 0, variants with lower MAF and variants located in lower LD 
regions tend to have larger effects on the trait as observed in recent empirical studies. We used 𝛼 = −0.25 in 
this set of simulation, which has been empirically estimated to reflect the relationship between effect size and 
allele frequency and produced approximately a 4-fold difference in the variance of per-allele effect size for both 
high-frequency vs. low-frequency variants and high-LD vs. low-LD variants included in the simulation. Our 
results showed that PRS-CSx is robust to the coupling between SNP effect size, allele frequency and LD. See 
Page 6, Line 238-242; Page 16, Line 647-655; Supplementary Figure 7. The expanded real data analysis in 
the biobanks also showed the robustness of PRS-CSx to varying genetic architectures. 
 
Third, monomorphic or rare variants not present in the population-specific LD reference panel of population A 
are not included in the construction of PRS for population A. If a SNP is present in population A but is 
monomorphic or rare in other populations, its effect size is not coupled in posterior inference but the SNP is 
included in the PRS of population A such that population-specific associations can be captured. We have 
clarified these in the Methods section of the revised manuscript. See Page 14, Line 540-544. 
 
5. Some standard MCMC metrics of performance would be useful. How many chains are employed and what 

is the autocorrelation across samples? 
 
-- Great question. All the prediction accuracy reported in the manuscript was based on one Markov chain. The 
convergence of MCMC samplers employed by Bayesian polygenic prediction methods is often overlooked in 
the literature, likely because (i) the focus of polygenic prediction is to aggregate genetic effects across the 
genome into a single score, rather than making inference of the genetic effects of individual variants; and (ii) 
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the convergence of the MCMC algorithm is typically monitored by saving the Markov chain for all model 
parameters and assessing convergence either visually or by diagnostic metrics. However, in polygenic 
prediction the sheer size of the model parameters (>1 million for each population) makes traditional model 
diagnostic methods difficult to apply. 
 
To assess the overall convergence of the Gibbs sampler used in PRS-CSx, for each trait, we selected a few 
SNPs where we monitored the convergence of their posterior effect size estimates. Some of the SNPs had 
strong associations with the trait in multiple populations, while some of the SNPs were null across populations. 
We ran the PRS-CSx model three times using different random seeds, and assessed the convergence using 
the Gelman-Rubin convergence diagnostic for multiple chains. All reduction factors across the SNPs we 
examined were smaller than 1.05, indicating convergence. As an example, Supplementary Fig. 8 shows the 
trace plots and autocorrelation functions (ACFs) for the posterior effects of rs7412 on low-density lipoprotein 
cholesterol (LDL-C) when integrating UKBB, BBJ and PAGE GWAS summary statistics using PRS-CSx. This 
SNP, located within the APOE locus on chromosome 19, had extremely strong marginal associations with 
LDL-C across the three populations (all P-values <1E-200). Trace plots and ACFs indicated that the Gibbs 
sampler achieved reasonable convergence and mixing. We also note that PRS-CSx guarantees that the 
posterior effect size estimates are bounded by the marginal effects (see the posterior mean derivation on Page 
14, Line 532), while other Bayesian polygenic prediction methods that rely on discrete mixture priors do not 
have this guarantee and may produce wildly inflated effect size estimates. We have added some of these text 
as well as a discussion on future directions to the manuscript. See Page 11, Line 413-430. 
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Decision Letter, first revision: 
 
 15th Oct 2021 
 
 
Dear Dr Huang, 
 
Your Article, "Improving Polygenic Prediction in Ancestrally Diverse Populations" has now been seen by 
3 referees. You will see from their comments below that while they find that the manuscript has 
improved, some final points are raised. We are very interested in the possibility of publishing your 
study in Nature Genetics, but would like to consider your response to these concerns in the form of a 
revised manuscript before we make a final decision. 
 
As you will see, all reviewers state that the manuscript has improved and appreciate the extensive 
additional analyses added. Reviewer #1 continues to think that the marginal improvement of the 
prediction accuracy will limit practical utility, and has some specific comments. Reviewer #2 has some 
remaining points that should be addressed. Reviewer #3 raises a few minor points that can be 
addressed with textual changes. 
As the manuscript has been significantly improved and there are no major outstanding technical 
issues, we are happy to move forward with this. We ask that you address the points raised by all 3 
reviewers, and it would be helpful if you could clarify or make a better case for the utility of the 
approach. 
 
We therefore invite you to revise your manuscript taking into account all reviewer and editor 
comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 
upload a copy of the manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
When revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available 
<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
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manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 
this time, please let us know. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. 
 
Thank you very much. 
 
All the best, 
 
Catherine 
 
--- 
 
Catherine Potenski, PhD 
Chief Editor 
Nature Genetics 
1 NY Plaza, 47th Fl. 
New York, NY 10004 
catherine.potenski@us.nature.com 
https://orcid.org/0000-0002-4843-7071 
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Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
The manuscript has certainly been improved with the addition of (1) more comprehensive simulation 
analysis, (2) the comparison between PRS-CSx and LDPred2-multi/PRS-CS-multi, and (3) analysis 
including the Taiwan data and LDPred2. Thank the authors for making all these efforts! 
 
I overall remained concerned about the practical usefulness of the method, given the marginal 
improvement of the prediction accuracy over the LDPred2-multi and PRS-CS-multi. Below are more 
specific comments: 
 
1. From Table S11, among the 33 quantitative traits, 7 traits are better predicted by PRS-CS-multi in 
AFR, 9 traits are better predicted by LDPred2-multi in AMR, 6 traits are better predicted by LDPred2-
multi in EAS, and 15 traits are also better predicted by LDPred2-multi in EUR when compared to PRS-
CSx, which challenges the robustness of the superiority of PRS-CSx. 
2. The authors argue that the marginal improvement is probably due to the lack of powerful non-EUR 
GWAS, but their results have shown that for those well-powered EUR GWAS, adding other non-EUR 
GWAS could not have further significant improvement, which indicates that when the GWAS is already 
well-powered, the method may also not have much gain over the existing method like LDPred2-multi 
and PRS-CS-multi. The authors may want to better clarify in which scenario this method can bring 
significant additional gains. 
3. Figure 4: from (a), the PRS-CSX only has a tiny improvement over the LDPred2-multi and PRS-CS-
multi when applied to schizophrenia. Especially for the Japanese population, LDPred2-multi is even 
significantly better than PRS-CS-multi, but the authors didn’t have any discussions on that. And I’m 
confused why the authors choose to show the comparison between PRS-CSx and LDPred2 in figure 
4(b), instead of comparison between PRS-CSx and LDPred2-multi. 
4. The authors mention the MCMC convergence issue when trying to create PRS-CS-meta or LDPred2-
meta, it will be appreciated if the authors can provide the corresponding MCMC diagnostic plots and 
corresponding prediction accuracy, which should be relatively small if the MCMC convergence issue is 
prominent. I am curious here because, in the recent paper 
https://doi.org/10.1016/j.ajhg.2021.03.002, they have tried the reference panels from both 
populations, and made a persuasive comparison between their method XPASS and Ldpred-meta. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
In this paper, the authors have introduced an extension to PRS-CS, PRS-CSx, which has improved 
performance when applied to under-represented population. In this update, the authors have done a 
thorough job in addressing most of the concerns, providing additional simulations and analyses, and 
have provided much needed details in the method sections. A methods for cross-population PRS 
analyses is much needed in the field and the development of PRS-CSx is definitely a welcoming sight. 
I have but a few questions remaining: 
 
1. While I agree that the relative R2 is a good metric of relative performance of different software, 
given that the PRS R2 can often be small, especially in non-European samples (for example, the 
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median R2 for AFR samples across all methods is around 0.0097 vs 0.0509 in EUR), it might still be 
worthwhile to at least show the difference of different population vs EUR (e.g. Performance of different 
method in different population vs performance of PRS-CS in EUR). Using this metric, we can see that 
while PRS-CSx outperforms PRS-CS using the EUR GWAS in all population, it still underperformed 
when compared to PRS-CS in EUR samples using EUR GWAS (except for AMR, which is interesting) 
 
2. Throughout the paper, the authors report the relative increase of performance, however, in figure 
3, the ratio of performance were reported instead (R2 / R2PRS-CS (UKBB) instead of (R2 - R2PRS-CS 
(UKBB) ) / R2PRS-CS (UKBB) ). It might be best to keep the reported metric consistent. 
 
3. On page 6 line 199-200, the authors stated that “However, when predicting into non-EUR 
populations, Bayesian multi-discovery methods demonstrated a clear advantage over single discovery 
methods.” Based on the results, it seems like all multi-discovery methods, including PT-meta and PT-
mult also out-perform the single discovery methods most of the time. 
 
4. If I understand correctly, to use PRS-CSx, we will first perform the PRS-CSx analysis to obtain the 
adjusted summary statistics for k populations across a few \phi. TO obtain the PRS-CSx PRS, we then 
need to fit the k PRS in a linear regression model (or logistic regression for binary trait), and then 
obtain the individual coefficients. The “final” PRS is then calculated by applying the coefficient from the 
linear regression to the k PRS calculated for the validation data set. If this is the case, will it be 
possible for us to use PRS-CSx in a relatively small cohort where split in half analyses might not be 
viable due to power, or if we would like to obtain PRS for all samples within our cohort? This might be 
a common scenario as sample size for the under-represented population are usually small. 
 
5. Another question I have is regarding non-overlapping SNPs. On page 14 line 538-542, it stated that 
monomorphic or rare variants do not present in the population specific LD panel for population A are 
not included in the construction of PRS for population A, but if the variants were missing in other 
population but not in population A, it will be included in the PRS calculation but not coupled in the 
posterior inference. Does that mean that for any SNPs that were only presented in one of the 
populations, the effect size of those SNPs will be applied as is without any shrinkage? To help me 
better understand this, imagine an extreme scenario where we have two populations A and B and the 
genotyping chips of these two populations does not share any SNPs. In this unlikely scenario, is it safe 
to assume that PRS-CSx will reduce into PRS-CS, where each of the populations were essentially 
analyzed separately and have their own adjustment? 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The revised manuscript by Ryan et al present new simulations and analyses that clarify and improve 
the manuscript. I thank the authors for the detailed comments with my remaining comments being on 
text clarifications. 
 
1. I could not find the derivation for the statement that under the proposed model the posterior mean 
effects is (D_k + T^-1)^2\beta_hat_k. In particular, the equation describing \beta_jk from main text 
is different from the supplementary. It appears \phi could be propagated through the gamma 
distributions to reach similar equations, but why the different equations? Also, no derivation is 
provided for the MCMC equations being correct to sample from the posterior of \beta as defined in the 
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model. I encourage the authors to tighten up their presentation of the mathematical aspects of their 
approach such that the reader can replicate/understand the mathematical details of their model. 
 
2. I commend the authors for the greatly expanded simulations exploring various parameters and 
impact of architecture on their results (Supp Figs 1-7). 
 
3. The authors continue to present their results in main text conflating sample size vs PRS method in 
assessing improvements in PRS performance. While it is ultimately the authors choice on how to 
present their main results, I continue to find this style of presentation likely to lead to misleading 
interpretations. 
 

Author Rebuttal, first revision: 
 
 NG-A56583  

Improving Polygenic Prediction in Ancestrally Diverse Populations 
Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin Guo, 
Stanley Global Asia Initiatives, Lin He, Akira Sawa, Alicia R. Martin, Shengying Qin, Hailiang Huang, Tian 
Ge 
 
We thank all the reviewers for their critical and constructive comments which have led to this 
improved manuscript. In this revision, we have further addressed the remaining concerns from 
the reviewers, with the point-by-point response provided below and the changes to the 
manuscript highlighted in red.  
 
Reviewer #1 
Remarks to the Author: 
The manuscript has certainly been improved with the addition of (1) more comprehensive 
simulation analysis, (2) the comparison between PRS-CSx and LDPred2-multi/PRS-CS-multi, 
and (3) analysis including the Taiwan data and LDPred2. Thank the authors for making all these 
efforts! 
 
I overall remained concerned about the practical usefulness of the method, given the marginal 
improvement of the prediction accuracy over the LDPred2-multi and PRS-CS-multi. Below are 
more specific comments: 
 
1. From Table S11, among the 33 quantitative traits, 7 traits are better predicted by PRS-CS-
multi in AFR, 9 traits are better predicted by LDPred2-multi in AMR, 6 traits are better predicted 
by LDPred2-multi in EAS, and 15 traits are also better predicted by LDPred2-multi in EUR when 
compared to PRS-CSx, which challenges the robustness of the superiority of PRS-CSx. 
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We thank the reviewer for raising this critical comment. We do agree with the reviewer that, 
when predicting into the European population, adding a smaller non-EUR GWAS to a well-
powered EUR GWAS provides limited gain in the prediction accuracy, and the relative 
improvement of PRS-CSx over LDpred2-mult and PRS-CS-mult is marginal. This observation 
was consistent across our simulation studies and biobank analyses. We have further clarified 
and discussed this in the revised manuscript in response to this and the next comment (Page 
11, Line 409-419). 
 
However, when predicting into non-European populations, PRS-CSx outperformed LDpred2-
mult and PRS-CS-mult by improving prediction accuracy for the majority of the traits we 
examined (PRS-CSx vs. LDpred2-mult: AFR 28/33, AMR 24/33, EAS 27/33, SAS 32/33; PRS-
CSx vs. PRS-CS-mult: AFR 27/33, AMR 25/33, EAS 32/33, SAS 32/33). Several traits for which 
PRS-CSx showed decreased prediction accuracy were not meaningfully predicted by any of the 
PRS methods (all R2 <0.5%; e.g., the prediction of AST, GLC and MCHC in the AFR 
population), and thus the ranking of methods for the prediction of these traits can be unreliable. 
Overall, the magnitude of improvement in prediction accuracy from PRS-CSx relative to 
LDpred2-mult and PRS-CS-mult was much larger than the magnitude of decrease in predictive 
performance. We now formally test and justify this statement by reporting the P-values of the 
two-sided Wilcoxon signed-rank test in the revised manuscript (PRS-CSx vs. LDpred2-mult: 
AFR 2.38E-5, AMR 4.25E-3, EAS 3.90E-4, SAS 6.48E-7; PRS-CSx vs. PRS-CS-mult: AFR 
2.99E-5, AMR 5.27E-4, EAS 2.84E-6, SAS 9.59E-7; see Page 7, Line 293-294; Page 8, Line 
300). All tests were significant and survived multiple testing corrections, suggesting statistically 
significant improvement of PRS-CSx over LDpred2-mult and PRS-CS-mult in non-European 
populations. 
 
We note that the process of choosing the best method from a range of PRS methods (e.g., 
LDpred2-mult and PRS-CS-mult) to compare with PRS-CSx also unfairly puts PRS-CSx at a 
disadvantage because this practice creates an “ensemble” of methods that naturally 
outperforms any single method (akin to the concept of ensemble learning). We argue that, PRS-
CSx is to date the only principled Bayesian method explicitly designed for multi-ancestry PRS 
analysis, and when choosing a single method for PRS analysis across populations a prior, PRS-
CSx is clearly the method of choice because it outperformed any other method for the majority 
of the traits examined; and for traits where the predictive performance decreased, the loss of 
prediction accuracy was often minimal.  
 
Lastly, with respect, we note that LDpred2-mult and PRS-CS-mult were created as 
“intermediate methods” between existing single-discovery PRS methods and PRS-CSx in this 
work to disentangle the various contributing factors to the increase of the predictive 
performance from PRS-CSx. While they were certainly helpful for this purpose -- we thank the 
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reviewer for suggesting this -- the comparison of PRS-CSx with LDpred2-mult and PRS-CS-mult 
is a bit unfair, as they are not published methods per se and have not been used in any prior 
publication to the best of our knowledge. We have now clarified this in the revised manuscript 
(Page 3, Line 127-132; Page 4, Figure 1 caption). 
 
2. The authors argue that the marginal improvement is probably due to the lack of powerful non-
EUR GWAS, but their results have shown that for those well-powered EUR GWAS, adding 
other non-EUR GWAS could not have further significant improvement, which indicates that 
when the GWAS is already well-powered, the method may also not have much gain over the 
existing method like LDPred2-multi and PRS-CS-multi. The authors may want to better clarify in 
which scenario this method can bring significant additional gains. 
 
Thanks for raising this important point. PRS-CSx provides limited gain in prediction power when 
a well-powered GWAS in the target population already exists and GWAS from other populations 
have smaller sample sizes and lower statistical power. Due to the current Eurocentric bias of 
genomic research, this happens almost exclusively for predictions in the EUR population. 
Intuitively, when a well-powered EUR GWAS is available, adding a smaller non-EUR GWAS 
provides limited benefits for the prediction in EUR individuals. This is consistent with our 
simulation studies and biobank analyses.  
 
In contrast, PRS-CSx can bring gains in prediction power (although the amount of improvement 
varies across traits as discussed in response to comment #1 and in the manuscript; see e.g., 
Page 11, Line 420-425) when the GWAS in the target population has lower statistical power, 
while well-powered GWAS from other populations are available. This often happens when 
predicting into a non-EUR population, where ancestry-matched GWAS have limited sample 
sizes but large-scale EUR GWAS already exist. By integrating EUR and non-EUR GWAS, PRS-
CSx can significantly improve the prediction accuracy in non-EUR populations, which alleviates 
the imminent challenge of polygenic prediction in under-represented populations. In the revised 
manuscript, we have clarified the scenarios in which PRS-CSx are expected to provide larger 
power gains (Page 11, Line 409-419). 
 
3. Figure 4: from (a), the PRS-CSX only has a tiny improvement over the LDPred2-multi and 
PRS-CS-multi when applied to schizophrenia. Especially for the Japanese population, LDPred2-
multi is even significantly better than PRS-CS-multi, but the authors didn’t have any discussions 
on that. And I’m confused why the authors choose to show the comparison between PRS-CSx 
and LDPred2 in figure 4(b), instead of comparison between PRS-CSx and LDPred2-multi. 
 
We agree with the reviewer that PRS-CSx provided relatively small improvement in prediction 
accuracy compared with LDpred2-mult and PRS-CS-mult when applied to schizophrenia. We 



 
 

 

10 
 

 

 

chose schizophrenia as an example of a dichotomous trait out of data availability: at the time we 
had access to individual-level genotype data for multiple schizophrenia cohorts, which enables a 
relatively comprehensive assessment of the performance of different PRS construction 
methods. Being one of the most polygenic disorders, schizophrenia actually represents an 
application scenario that is not favorable to the PRS-CS-type of methods. We observed in both 
simulations and the biobank analyses that (i) the benefits of the coupled prior decreased with 
the increasing polygenicity of the genetic architecture (see e.g., Page 6, Line 217-223; 
Supplementary Figure 1); (ii) LDpred2 was more accurate than PRS-CS when the discovery 
sample size was limited (relative to the polygenicity of the trait), and a larger discovery sample 
size is needed for PRS-CS to outperform LDpred2 for highly polygenic traits (see e.g., Page 6, 
Line 228-233; Supplementary Figure 3). With further methodological discussions in the 
manuscript (Page 4-5, Line 174-184), this reflects the strengths and limitations of the continuous 
shrinkage prior vs. the spike-and-slab prior used in PRS-CS and LDpred2, respectively. For 
schizophrenia this is evident in the comparison of single-discovery PRS methods: LDpred2 
outperformed PRS-CS in 5 out of 6 of the cohorts. Conversely, when integrating EUR and EAS 
schizophrenia GWAS, PRS-CSx outperformed LDpred2-mult in 5 out of 6 of the cohorts with a 
median increase in prediction accuracy of 8.7%. This multi-ancestry finding is therefore 
encouraging and demonstrates the benefits of the coupled prior in practice even for highly 
polygenic traits. As the GWAS sample size continues to grow in non-European populations, 
PRS-CSx is expected to provide larger and more robust improvement over LDpred2-mult and 
PRS-CS-mult for these highly polygenic traits, as shown in the simulation studies. We have 
added a brief discussion of these points to the revised manuscript (Page 10-11, Line 383-387). 
 
Admittedly, PRS-CSx and LDpred2-mult had largely overlapping confidence intervals in this 
analysis as shown in Supplementary Table 18. We chose to present the results of LDpred2 
rather than LDpred2-mult because, as we discussed in response to comment #1, LDpred2-mult 
is not a published method nor has been used in any prior publication. It was created in this work 
to delineate various contributing factors to the predictive performance of PRS-CSx. While it 
served its designated purpose well, in Figure 4b we prefer to compare PRS-CSx with existing 
methods that are used in the field to advocate for using a more sophisticated PRS method to 
make the best use of the non-European samples. To date, the prevailing practice has always 
been using single-discovery methods or naive multi-discovery methods such as PT-meta and 
PT-mult. We chose LDpred2 in Figure 4b because it was the best-performing single-discovery 
method and outperformed published multi-discovery methods including PT-meta and PT-mult. 
 
4. The authors mention the MCMC convergence issue when trying to create PRS-CS-meta or 
LDPred2-meta, it will be appreciated if the authors can provide the corresponding MCMC 
diagnostic plots and corresponding prediction accuracy, which should be relatively small if the 
MCMC convergence issue is prominent. I am curious here because, in the recent paper 
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https://doi.org/10.1016/j.ajhg.2021.03.002, they have tried the reference panels from both 
populations, and made a persuasive comparison between their method XPASS and Ldpred-
meta. 
 
Thanks for the suggestion and apologies for not providing a more detailed explanation of the 
exclusion of LDpred2-meta and PRS-CS-meta from the current work in the previous response 
letter. We decided not to include LDpred2-meta and PRS-CS-meta in this manuscript early in 
the project for the following three reasons based on our simulation results in selected settings.  
 
First, the mismatch between the LD pattern of a cross-ancestry meta-analyzed GWAS (which is 
a mixture of population-specific LD) and the reference LD leads to convergence issues for the 
LDpred2 algorithm. For example, in our primary simulation, when applying LDpred2 to the 
EUR+EAS meta-GWAS, 73% of the MCMC runs using the EAS reference panel and 63% of the 
runs using the EUR reference panel had posterior SNP effect size estimates diverged to infinity 
(individualized polygenic scores >1E+30). Similarly, when applying LDpred2 to the EUR+AFR 
meta-GWAS, 94% of the runs using the AFR reference panel and 62% of the runs using the 
EUR reference panel had diverged posterior effect size estimates. Since LDpred2 screens a 
wide range of hyper-parameter values from which the optimal value is selected, it usually still 
produces reasonable predictions in the testing sample even if a significant proportion of the 
tested hyper-parameter values leads to divergence of the MCMC algorithm, which masks the 
convergence issue. For example, in our primary simulation, when the target population was 
EAS, the prediction accuracy of PRS-CSx vs. LDpred2-meta was 0.168 vs. 0.141; when the 
target population was AFR, the prediction accuracy of PRS-CSx vs. LDpred2-meta was 0.117 
vs. 0.097. However, as the GWAS sample size increases and the model fitting algorithm 
becomes more sensitive to LD mismatch, the convergence issue can be worse which further 
limits the prediction accuracy. For example, in our simulation setting that combined 300K EUR 
with 60K EAS or AFR samples, when applying LDpred2 to the EUR+EAS meta-GWAS, 96% of 
the MCMC runs using the EAS reference panel and 89% of the runs using the EUR reference 
panel diverged; when applying LDpred2 to the EUR+AFR meta-GWAS, all of the runs using the 
AFR reference panel and 88% of the runs using the EUR reference panel diverged. In this 
scenario, PRS-CSx had substantially better prediction accuracy than LDpred2-meta in both EAS 
and AFR populations: 0.274 vs. 0.169 and 0.223 vs. 0.121, respectively. Our observations are 
consistent with recent studies which found that PRS-CS was more robust to LD mismatch than 
other Bayesian PRS methods (medRxiv preprint: https://doi.org/10.1101/2021.01.19.21249483). 
 
Second, the predictive performance of LDpred2-meta and PRS-CS-meta heavily depends on 
whether the assumption of the fixed-effect meta-analysis (i.e., consistent SNP effects across 
populations) is accurate. While the prediction accuracy of LDpred2-meta and PRS-CS-meta 
may approach PRS-CSx when the genetic architecture of the trait is highly consistent across 

https://secure-web.cisco.com/1sTtdCWMH3tbyOApsZCZzOBQ174Cgqv4Ugj-LgmQKMssu-DHs2dw9bKw5XSSpDa59WoUUAgKhE9u6qeD8DGy6tVyqrxxYMyXgagUIJxOr2MBo3gZX9rmGQ1aAJ60qOneQQVmCNcu0i22KdP3hd5GnY2r0lsr1RdkqtFvpI0UHCwqugPGSK4WQWTO9rn1J4TeQlV-8WO5uTaD80kIRwEkOuU2-5EoXSmMaOICxCc3PNp-3MxrRGTjTIyFdB5fR426C/https%3A%2F%2Fdoi.org%2F10.1016%2Fj.ajhg.2021.03.002
https://doi.org/10.1101/2021.01.19.21249483
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populations, the performance drops dramatically when the assumption is violated. For example, 
in our simulation setting where the cross-population genetic correlation was set to 0.4, the 
prediction accuracy of PRS-CSx vs. LDpred2-meta vs. PRS-CS-meta was 0.128 vs. 0.085 vs. 
0.087 when the target population was EAS, and 0.085 vs. 0.058 vs.0.059 when the target 
population was AFR. Therefore, unlike PRS-CSx or the “mult” methods that can be adaptive to 
a wide range of cross-population genetic architectures, the “meta” methods are competitive in 
much narrower application scenarios. 
 
Third, running Bayesian polygenic prediction methods, and LDpred2 in particular, is 
computationally expensive. Each LDpred2 run requires ~20 hours of computational time, ~50 
Gb of memory, and writes ~50 Gb of temporary data to the hard disc. Producing full results for 
LDpred2-meta and PRS-CS-meta across all simulation settings and real data applications will 
add weeks if not months of computational time, as well as tremendous computational cost, to 
our already intensive simulations and biobank analyses. 
 
For these reasons, we did not include LDpred2-meta and PRS-CS-meta in this manuscript. That 
said, we do realize that, although LDpred2-meta and PRS-CS-meta are suboptimal from a 
modeling perspective and may produce less accurate predictions than PRS-CSx or “mult” 
methods, many existing studies have only released cross-population meta-GWAS, in which 
case LDpred2-meta and PRS-CS-meta remain useful approaches in practice. We have added 
discussion of these points to the revised manuscript, and have advocated the release of 
ancestry-specific summary statistics from multi-ancestry genomic studies to enable flexible and 
accurate cross-population polygenic modeling and prediction (Page 11-12, Line 431-443). 
 
 
Reviewer #2 
Remarks to the Author: 
In this paper, the authors have introduced an extension to PRS-CS, PRS-CSx, which has 
improved performance when applied to under-represented populations. In this update, the 
authors have done a thorough job in addressing most of the concerns, providing additional 
simulations and analyses, and have provided much needed details in the method sections. A 
method for cross-population PRS analyses is much needed in the field and the development of 
PRS-CSx is definitely a welcoming sight. I have but a few questions remaining: 
 
1. While I agree that the relative R2 is a good metric of relative performance of different 
software, given that the PRS R2 can often be small, especially in non-European samples (for 
example, the median R2 for AFR samples across all methods is around 0.0097 vs 0.0509 in 
EUR), it might still be worthwhile to at least show the difference of different population vs EUR 
(e.g. Performance of different methods in different populations vs performance of PRS-CS in 
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EUR). Using this metric, we can see that while PRS-CSx outperforms PRS-CS using the EUR 
GWAS in all populations, it still underperformed when compared to PRS-CS in EUR samples 
using EUR GWAS (except for AMR, which is interesting). 
 
Thanks for the suggestion. We fully agree with the reviewer that this is an important point. We 
have added Supplementary Figure 8 in the revised manuscript (also pasted below for 
convenience), which shows the predictive performance of different PRS methods with respect to 
the prediction accuracy of PRS-CS in the EUR target population trained on the UKBB GWAS. 
We have additionally noted in the following revised text that while PRS-CSx improved the 
prediction accuracy in non-European populations, the overall predictions in the non-European 
populations, especially in the AFR population, remained low relative to the predictions in the 
EUR population, reflecting the current Eurocentric bias in the discovery GWAS.  
 
Page 8, Line 301-302: 
“That said, the absolute prediction accuracy in the AFR population was low relative to the 
predictions in the EUR and EAS populations, because both discovery samples are genetically 
distant (Supplementary Fig. 8).” 
 
Page 9, Line 343-345: 
“We note, however, that the overall prediction accuracy in the AFR population remained low 
relative to the predictions in EUR and EAS individuals, reflecting highly imbalanced sample 
sizes in the training GWAS across populations (Supplementary Fig. 8).” 
 
Page 13, Line 504-510: 
“Lastly, we note that although PRS-CSx can improve cross-population polygenic prediction, the 
gap in the prediction accuracy between European and non-European populations remains 
considerable, and many predictions in non-European populations are not practically useful. 
Indeed, sophisticated statistical and computational methods alone will not be able to overcome 
the current Eurocentric biases in GWAS. Broadening the sample diversity in genomic research 
to fully characterize the genetic architecture and understand the genetic and non-genetic 
contributions to human complex traits and diseases across global populations is crucial to 
further improve the prediction accuracy of PRS in diverse populations.” 
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Supplementary Figure 8: Relative prediction performance for single-discovery and multi-
discovery PRS construction methods using discovery GWAS summary statistics a, from UKBB 
and BBJ, across 33 traits, in different UKBB target populations (EUR, EAS and AFR); b, from 
UKBB and BBJ, across 21 traits, in the Taiwan Biobank (TWB); c, from UKBB, BBJ and PAGE, 
across 14 traits, in different UKBB target populations (EUR, EAS and AFR). Each data point 
shows the relative increase of prediction performance, defined as R2/R2PRS-CS (UKBB)-EUR - 1, in 
which R2PRS-CS (UKBB)-EUR is the R2 of the trait in the EUR population using PRS-CS trained on 
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the UKBB GWAS summary statistics. In UKBB target populations (panels a and c), R2 were 
averaged across 100 random splits of the target samples into validation and testing datasets. 
The crossbar indicates the median of the relative increase of predictive performance across the 
traits examined. “median N” indicates the median sample size across the respective discovery 
GWAS. The trait MCHC was not included in the AFR panel because its R2 from PRS-CS 
(UKBB) was almost 0, which inflated relative increase of prediction performance for other 
methods. 
 
2. Throughout the paper, the authors report the relative increase of performance, however, in 
figure 3, the ratio of performance were reported instead (R2 / R2PRS-CS (UKBB) instead of (R2 
- R2PRS-CS (UKBB) ) / R2PRS-CS (UKBB) ). It might be best to keep the reported metric 
consistent.  
 
Thanks for the suggestion. We have now updated Figure 3 and its legend to report the relative 
predictive performance of each method with respect to PRS-CS trained on the UKBB GWAS, 
i.e., R2/R2PRS-CS (UKBB) -1. 
 
3. On page 6 line 199-200, the authors stated that “However, when predicting into non-EUR 
populations, Bayesian multi-discovery methods demonstrated a clear advantage over single 
discovery methods.” Based on the results, it seems like all multi-discovery methods, including 
PT-meta and PT-mult also out-perform the single discovery methods most of the time. 
 
Yes, both PT-meta and PT-mult outperformed single-discovery methods most of the time. 
However, the improvement was marginal in some simulation settings and was much smaller 
compared with Bayesian multi-discovery methods. We have revised the text to make the 
description more accurate (Page 6, Line 206-208): 
 
“However, when predicting into non-EUR populations, multi-discovery methods clearly 
outperformed single-discovery methods, with Bayesian methods (LDpred2-mult, PRS-CS-mult 
and PRS-CSx) demonstrating a larger advantage over PT-based methods.” 
 
4. If I understand correctly, to use PRS-CSx, we will first perform the PRS-CSx analysis to 
obtain the adjusted summary statistics for k populations across a few \phi. To obtain the PRS-
CSx PRS, we then need to fit the k PRS in a linear regression model (or logistic regression for 
binary trait), and then obtain the individual coefficients. The “final” PRS is then calculated by 
applying the coefficient from the linear regression to the k PRS calculated for the validation data 
set. If this is the case, will it be possible for us to use PRS-CSx in a relatively small cohort where 
split in half analyses might not be viable due to power, or if we would like to obtain PRS for all 
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samples within our cohort? This might be a common scenario as sample size for the under-
represented population is usually small. 
 
This is a great question. The reviewer is correct that, same as PT-mult, LDpred2-mult and PRS-
CS-mult, the use of PRS-CSx requires a validation dataset to tune hyper-parameters and learn 
the optimal linear combination of population-specific PRS, and an independent testing dataset 
where the final PRS can be generated and evaluated. We expect that, as non-European 
genomic resources continue to grow, reserving a relatively small number of samples for 
validation will become increasingly manageable. However, we do recognize that currently some 
target cohorts may be too small to be split into validation and testing datasets, which limits the 
use of PRS-CSx and the linear combination strategy in general. To address this issue: 

1. We have released the posterior SNP weights (see the github repository for PRS-CSx: 
https://github.com/getian107/PRScsx) and linear combination weights of PRS-CSx for all 
the traits and target populations examined in this study (Supplementary Tables 12 and 
15) to facilitate the use of PRS-CSx. These weights can be directly applied to the target 
cohort to generate the final PRS, eliminating the need of a validation dataset. 

2. External individual-level datasets that have matched phenotype and ancestry with the 
target cohort can be used as the validation sample. For example, UKBB included >7,000 
African, >2,000 East Asian and >8,000 South Asian individuals, sufficient to be used as 
an independent validation dataset for a range of complex traits and disease phenotypes. 
Our analysis in the Taiwan Biobank (TWB) used this approach, where hyper-parameters 
and linear combination weights were optimized in the UKBB EAS sample, and applied 
without modifications to the TWB sample. 

We further note that, while these efforts and strategies may partially resolve the issue, as non-
European genomic resources remain limited, for some phenotypes of interest, independent 
validation and testing datasets may be difficult to identify, and PRS evaluation may rely on a 
single small target cohort. In addition, in certain applications, as the reviewer pointed out, it may 
be preferable to calculate PRS for all samples within the target cohort rather than stratifying 
them into different ancestry groups. For example, returning genomic predictions to recently 
admixed patients in clinical settings would be difficult as ancestries are not distinct entities, and 
genetic ancestry assignments may be inconsistent with self-reported race/ethnicity, illuminating 
the complexity of communicating population-stratified PRS results to patients. In these 
scenarios, PRS-CSx provides an “auto” version which automatically learns the global shrinkage 
parameter from the discovery summary statistics, and a “meta” option which integrates 
population-specific posterior SNP effects using an inverse-variance-weighted meta-analysis 
within MCMC iterations. Combining the “auto” and “meta” algorithms thus generates a trans-
ancestry PRS that can be applied to all samples in the target cohort without the need for a 
validation dataset. We note that, although simpler to implement, the “meta” option is expected to 
be less accurate compared with the linear combination approach that optimizes PRS estimation 
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separately in each target population. In this revision, we have added new text to discuss the 
above options that can deal with small target cohorts, as well as their advantages and 
limitations (Page 12, Line 445-466). As the goal of the manuscript is to maximize the prediction 
accuracy of PRS in major population groups, we did not include assessment of the “auto” and 
“meta” algorithms, but saved the application and assessment of this trans-ancestry PRS 
construction approach to separate work that has a focus on the clinical translation and 
implementation of PRS (medRxiv preprint: https://doi.org/10.1101/2021.09.11.21263413). 
 
5. Another question I have is regarding non-overlapping SNPs. On page 14 line 538-542, it 
stated that monomorphic or rare variants do not present in the population specific LD panel for 
population A are not included in the construction of PRS for population A, but if the variants 
were missing in other population but not in population A, it will be included in the PRS 
calculation but not coupled in the posterior inference. Does that mean that for any SNPs that 
were only presented in one of the populations, the effect size of those SNPs will be applied as is 
without any shrinkage? To help me better understand this, imagine an extreme scenario where 
we have two populations A and B and the genotyping chips of these two populations does not 
share any SNPs. In this unlikely scenario, is it safe to assume that PRS-CSx will reduce into 
PRS-CS, where each of the populations were essentially analyzed separately and have their 
own adjustment? 
 
For SNPs that are only present in one population but missing in other populations, a shrinkage 
is still applied to the marginal effect size of the SNP, but the amount of shrinkage is not coupled 
across populations. The reviewer is correct that in the extreme scenario where there is no 
overlapping SNP between input GWAS summary statistics, PRS-CSx reduces to applying PRS-
CS separately to each discovery GWAS. We have clarified this in the text (Page 15, Line 597-
599): 
 
“In the extreme, unlikely scenario, where there is no overlapping SNP between input GWAS 
summary statistics, PRS-CSx reduces to applying PRS-CS separately to each discovery 
GWAS.” 
 
 
Reviewer #3 
Remarks to the Author: 
The revised manuscript by Ryan et al present new simulations and analyses that clarify and 
improve the manuscript. I thank the authors for the detailed comments with my remaining 
comments being on text clarifications. 
 



 
 

 

18 
 

 

 

1. I could not find the derivation for the statement that under the proposed model the posterior 
mean effects is (D_k + T^-1)^2\beta_hat_k. In particular, the equation describing \beta_jk from 
main text is different from the supplementary. It appears \phi could be propagated through the 
gamma distributions to reach similar equations, but why the different equations? Also, no 
derivation is provided for the MCMC equations being correct to sample from the posterior of 
\beta as defined in the model. I encourage the authors to tighten up their presentation of the 
mathematical aspects of their approach such that the reader can replicate/understand the 
mathematical details of their model.  
 
We apologize for not providing sufficient mathematical details for the model and posterior 
inference. The marginal density of beta is equivalent whether the global shrinkage parameter 
(𝜙𝜙) scales the variance of the normal distribution or the rate parameter of the gamma 
distribution. We presented the former formulation in the main text because we thought it would 
be easier to see how beta scales with both the local and global shrinkage parameters. To avoid 
confusion, we now present consistent models in the main text (Page 15, Line 573) and 
Supplementary Information, where 𝜙𝜙 is included in the gamma distribution (which is the model 
we implement in posterior inference), but also clarify that the variance of beta scales with both 
the local and global shrinkage parameters (Supplementary Methods). In addition, we now 
provide in the Supplementary Information a step-by-step derivation of the full conditional 
distributions used in the Gibbs sampler (Supplementary Methods). We hope that these additions 
provide sufficient details of the mathematical aspects of the PRS-CSx model. 
 
2. I commend the authors for the greatly expanded simulations exploring various parameters 
and impact of architecture on their results (Supp Figs 1-7).  
 
Many thanks for the positive comments! 
 
3. The authors continue to present their results in the main text conflating sample size vs PRS 
method in assessing improvements in PRS performance. While it is ultimately the authors 
choice on how to present their main results, I continue to find this style of presentation likely to 
lead to misleading interpretations. 
 
We thank the reviewer for the continued discussion on this important topic. We fully agree that it 
is critical to deliver our results with clarity to prevent potential misleading interpretations. With 
justifications provided in the next paragraph, we have now added the median sample size of the 
discovery GWAS to the legend of both Figure 2 and Figure 3 such that readers can directly 
appreciate the fact that single-discovery and multi-discovery methods are trained on discovery 
GWAS with different sample sizes.  
 



 
 

 

19 
 

 

 

We recognize that given the various factors that can influence prediction accuracy (e.g., 
different methods, target populations and training sample sizes), and the massive information 
that can be extracted from the analysis (e.g., comparison of different PRS methods, comparison 
of prediction accuracy across target populations, and comparison of the predictive power of 
different training GWAS), each presentation style has their limitations. We fully agree with the 
reviewer that the current presentation style is not perfect. As we discussed in our previous 
response letter, while aligning the total training sample size reveals the contributions of factors 
other than the sample size to the prediction accuracy, our current presentation has the benefit of 
aligning with the common practice in the field and best summarizing the information we would 
like to convey in the main text. Specifically, we chose this analysis design because (i) it mimics 
the real-world scenario where each method is applied to the largest GWAS available; (ii) it 
shows the advantage of integrating data from multiple populations over single-discovery 
methods in cross-population prediction.  
Upon the reviewer’s comment, we have clarified the sample size in the figure legend. We hope 
this provides additional clarity and reduces the chance of misinterpreting the results. 
 
 

Decision Letter, second revision:   
 
 Our ref: NG-A56583R2 
 
29th Dec 2021 
 
Dear Dr. Huang, 
 
Thank you for submitting your revised manuscript "Improving Polygenic Prediction in Ancestrally 
Diverse Populations" (NG-A56583R2). It has now been seen by the original referees and their 
comments are below. The reviewers find that the paper has improved in revision, and therefore we'll 
be happy in principle to publish it in Nature Genetics, pending minor revisions to satisfy the referees' 
final requests and to comply with our editorial and formatting guidelines. 
 
We are now performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements soon. Please do not upload the final materials and make any 
revisions until you receive this additional information from us. 
 
Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 
any questions. 
 
Congratulations on the paper! 
 
All the best, 
 
Catherine 
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Reviewer #2 (Remarks to the Author): 
 
With the latest update of the manuscript, most of my concerns are now addressed. Thank you to the 
authors for their hard works. I have just one final comment. 
 
In recent analysis, I tried to replicate the authors' simulation procedure to generate population 
stratified data using HapGen. While the resulting genotype data does have the expected MAF structure 
of their corresponding population, the actual population structure were not representative e.g. Fst 
between the European and African samples were much closer than expected (less than 0.1) and the 
different populations were perfectly separated on PC1. This should not be a serious problem for the 
authors as they have also conducted many analyses on real data, however, given that there are a 
relatively large fraction of results were conducted on the simulated data, it might worth putting this 
problem down as a possible limitations. Other than that, I have no other comments and I think this 
paper is ready for publish. 
 
Thank you for the hard works. 
 
 

Author Rebuttal, second revision:   
 
 
 
NG-A56583  
Improving Polygenic Prediction in Ancestrally Diverse Populations 
Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin Guo, 
Stanley Global Asia Initiatives, Lin He, Akira Sawa, Alicia R. Martin, Shengying Qin, Hailiang Huang, Tian 
Ge 
 
Reviewer #2: 
Remarks to the Author: 
With the latest update of the manuscript, most of my concerns are now addressed. Thank you to 
the authors for their hard works. I have just one final comment. 
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In recent analysis, I tried to replicate the authors' simulation procedure to generate population 
stratified data using HapGen. While the resulting genotype data does have the expected MAF 
structure of their corresponding population, the actual population structure were not 
representative e.g. Fst between the European and African samples were much closer than 
expected (less than 0.1) and the different populations were perfectly separated on PC1. This 
should not be a serious problem for the authors as they have also conducted many analyses on 
real data, however, given that there are a relatively large fraction of results were conducted on 
the simulated data, it might worth putting this problem down as a possible limitations. Other than 
that, I have no other comments and I think this paper is ready for publish.  
 
Thank you for the hard works. 
 
We thank the reviewer for pointing this out. We have revised our manuscript accordingly by 
adding: “We note, however, that while highly scalable, genotypes simulated by HAPGEN2 may 
not fully capture the complex population structure within and across ancestry groups.” 
 
 
 

Final Decision Letter: 
 
In reply please quote: NG-A56583R3 Huang 
 
16th Mar 2022 
 
Dear Dr. Huang, 
 
I am delighted to say that your manuscript "Improving Polygenic Prediction in Ancestrally Diverse 
Populations" has been accepted for publication in an upcoming issue of Nature Genetics. 
 
Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any 
additional information that may be required. 
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 
 
You will not receive your proofs until the publishing agreement has been received through our system. 
 
Due to the importance of these deadlines, we ask that you please let us know now whether you will be 
difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
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